Earthquake Safety Assessment of Buildings through Rapid Visual Screening
Author(s): |
Ehsan Harirchian
Tom Lahmer Sreekanth Buddhiraju Kifaytullah Mohammad Amir Mosavi |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 February 2020, n. 3, v. 10 |
Page(s): | 51 |
DOI: | 10.3390/buildings10030051 |
Abstract: |
Earthquake is among the most devastating natural disasters causing severe economical, environmental, and social destruction. Earthquake safety assessment and building hazard monitoring can highly contribute to urban sustainability through identification and insight into optimum materials and structures. While the vulnerability of structures mainly depends on the structural resistance, the safety assessment of buildings can be highly challenging. In this paper, we consider the Rapid Visual Screening (RVS) method, which is a qualitative procedure for estimating structural scores for buildings suitable for medium- to high-seismic cases. This paper presents an overview of the common RVS methods, i.e., FEMA P-154, IITK-GGSDMA, and EMPI. To examine the accuracy and validation, a practical comparison is performed between their assessment and observed damage of reinforced concrete buildings from a street survey in the Bingöl region, Turkey, after the 1 May 2003 earthquake. The results demonstrate that the application of RVS methods for preliminary damage estimation is a vital tool. Furthermore, the comparative analysis showed that FEMA P-154 creates an assessment that overestimates damage states and is not economically viable, while EMPI and IITK-GGSDMA provide more accurate and practical estimation, respectively. |
Copyright: | © 2020 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
0.48 MB
- About this
data sheet - Reference-ID
10416658 - Published on:
17/03/2020 - Last updated on:
02/06/2021