Earthquake Design of Reinforced Concrete Buildings Using NSGA-II
Author(s): |
Herian A. Leyva
Edén Bojórquez Juan Bojórquez Alfredo Reyes-Salazar José H. Castorena Eduardo Fernández Manuel A. Barraza |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-11 |
DOI: | 10.1155/2018/5906279 |
Abstract: |
In the present study, the optimal seismic design of reinforced concrete (RC) buildings is obtained. For this purpose, genetic algorithms (GAs) are used through the technique NSGA-II (Nondominated Sorting Genetic Algorithm), thus a multiobjective procedure with two objective functions is established. The first objective function is the control of maximum interstory drift which is the most common parameter used in seismic design codes, while the second is to minimize the cost of the structure. For this aim, several RC buildings are designed in accordance with the Mexico City Building Code (MCBC). It is assumed that the structures are constituted by rectangular and square concrete sections for the beams, columns, and slabs which are represented by a binary codification. In conclusion, this study provides complete designed RC buildings which also can be used directly in the structural and civil engineering practice by means of genetic algorithms. Moreover, genetic algorithms are able to find the most adequate structures in terms of seismic performance and economy. |
Copyright: | © 2018 Herian A. Leyva et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.11 MB
- About this
data sheet - Reference-ID
10222701 - Published on:
01/12/2018 - Last updated on:
02/06/2021