0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Early Shrinkage Modeling of Complex Internally Confined Concrete Based on Capillary Tension Theory

Author(s):








Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 13
Page(s): 2201
DOI: 10.3390/buildings13092201
Abstract:

This paper evaluates the shrinkage performance of concrete under complex internal constraint environments comprising steel plates, studs, and reinforcement to investigate their respective influence laws on the shrinkage performance of concrete. An early shrinkage model of concrete under complex internal constraints was established based on the theory of capillary tension, and the effects of steel plate, nails, and steel reinforcement on the shrinkage performance of concrete were theoretically analyzed. Six sets of concrete-constrained shrinkage tests and pore structure tests were then performed under different internal constraint conditions with the steel plate thickness, reinforcement diameter, and stud-related parameters (stud diameter, height, and spacing) as research variables. The test results demonstrate that the pore structure of concrete increases with the increase in the constraint coefficient, and that the increase in the pore structure will cause a decrease in the capillary pore stress, which is the driving force of concrete shrinkage. Its decrease will inevitably lead to a decrease in concrete shrinkage. By comparing the calculated values of the shrinkage model with the measured values, it is found that the average value of the prediction error is less than 15%, which reveals that the predicted values of shrinkage are in good agreement with the measured values and proves that the model can effectively predict the shrinkage of concrete that is restrained by steel plates, pins, and reinforcing bars.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737453
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine