0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 12
Page(s): 264
DOI: 10.3390/buildings12030264
Abstract:

A rise in the number of EVs (electric vehicles) in Europe is putting pressure on power grids. At an urban scale, Positive Energy Districts (PEDs) are devised as archetypes of (small) urban districts managing a set of interconnected buildings and district elements (lighting system, vehicles, smart grid, etc.). This paper offers a comprehensive analysis of the impact of e-mobility in a PED, simulated using MATLAB-Simulink software. The PED, a small district in northern Spain, is assessed in five scenarios representing varying requirements in terms of energy efficiency of buildings, type of street lighting and number of EVs. The results suggest that the energy rating of the buildings (ranging from A for the most efficient to E) conditions the annual energy balance. A PED with six interconnected buildings (3 residential and 3 of public use) and 405 EVs (as a baseline) only achieves positivity when the buildings have a high energy rating (certificate A or B). In the most efficient case (A-rated buildings), simulation results show that the PED can support 695 EVs; in other words, it can provide nearly 9 million green kilometres. This result represents a potential 71% saving in carbon emissions from e-mobility alone (as compared to the use of fossil-fuel vehicles), thus contributing a reduction in the carbon footprint of the district and the city as a whole.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10661219
  • Published on:
    23/03/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine