0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Dynamic Stability for Seismic-Excited Earth Retaining Structures Following a Nonlinear Criterion

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 4086
DOI: 10.3390/buildings14124086
Abstract:

Based on the upper bound limit analysis, the multi-log spiral failure mechanism for earth retaining structures under horizontal seismic loads was constructed, which could introduce the nonlinear strength criterion into stability analysis without any linearization technique. By calculating various external work rates and the internal energy dissipation, the energy balance equation was established, and the active earth pressure formula required for the retaining structure to be in a critical stable state was derived. With the application of a genetic algorithm and particle swarm optimization, the optimal upper bound solutions of active earth pressure coefficients were obtained. The validity of the research results was verified through comparative analysis. This paper provided diagrams of the active earth pressure coefficients required for earth retaining structures to maintain a critical stability state under different parameters. The influences of seismic load, slope inclination angle, soil strength tension cutoff (TC), and the δ/ϕ ratio were investigated. By investigating the design charts, the active earth pressures applicable to practical engineering can be obtained, which provide a theoretical basis for the preliminary design of retaining structures in earthquake-prone areas.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810359
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine