0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks

Author(s):


Medium: journal article
Language(s): English
Published in: Structural Health Monitoring, , n. 4, v. 20
Page(s): 147592172091688
DOI: 10.1177/1475921720916881
Abstract:

This article proposes a novel dynamic response reconstruction approach for structural health monitoring using densely connected convolutional networks. Skip connection and dense block techniques are carefully applied in the designed network architecture, which greatly facilitates the information flow, and increases the training efficiency and accuracy of feature extraction and propagation with fewer parameters in the network. Sub-pixel shuffling and dropout techniques are used in the designed network and applied to reduce the computational demand and improve training efficiency. The network is trained in a supervised manner, where the input and output are the measurements of the available channels at response available locations and desired channels at response unavailable locations. The proposed densely connected convolutional networks automatically extract the high-level features of the input data and construct the complicated nonlinear relationship between the responses of available and desired locations. Experimental studies are conducted using the measured acceleration responses from Guangzhou New Television Tower to investigate the effects of the locations of available responses, the numbers of available and unavailable channels, and measurement noise. The results demonstrate that the proposed approach can accurately reconstruct the responses in both time and frequency domains with strong noise immunity. The reconstructed response is further used for modal identification to demonstrate the usability and accuracy of the reconstructed responses. The applicability of the proposed approach for structural health monitoring is further proved by the highly consistent modal parameters identified from the reconstructed and true responses.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/1475921720916881.
  • About this
    data sheet
  • Reference-ID
    10562418
  • Published on:
    11/02/2021
  • Last updated on:
    09/07/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine