0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Dynamic Property of a New Type of Postearthquake Temporary Prefabricated Lightweight Steel Structure

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-15
DOI: 10.1155/2019/7891948
Abstract:

For a new type of postearthquake temporary prefabricated lightweight steel structure proposed in this paper, mainly composed of steel frame, prefabricated hanger slabs, prefabricated hanger columns, reinforced concrete superposed slabs, etc., parameters of dynamic property for the structure, including natural frequency, vibration mode, damping ratio, etc., are determined by the test method. For prefabricated hanger columns and prefabricated hanger slabs, they are all produced with construction waste in factory and assembled on-site, which can form exterior walls. The united method, based on forced vibration method and ambient random vibration method, can quickly obtain accurate natural frequencies of the full-scale two-story experimental model. In this paper, damping oscillatory method is used to obtain damping ratio which can be determined only by the test method. In order to analyse the modal of the experimental model, a finite element model for the full-scale two-story experimental model is established, where the weight of prefabricated hanger slabs is assumed to be supported by prefabricated hanger columns, and the stiffness of prefabricated hanger columns is also increased. In addition, the connections between lightweight steel frame and prefabricated hanger columns are regarded as flexible connection. Comparing natural frequencies obtained from the finite element method with that obtained from the test method, magnification factor of stiffness for prefabricated hanger column is determined. In the analysis of modal for the full-scale two-story experimental model, the results show that the experimental model satisfies the requirement of design for seismic performance.

Copyright: © 2019 GuoQi Xing et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10300562
  • Published on:
    18/02/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine