Dynamic performance of a new type of damping and wind-resistant bearing in the Nizhou waterway bridge of Nansha Bridge
Author(s): |
X. D. Zhou
P. Zhu X. M. Zhang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | IOP Conference Series: Earth and Environmental Science, 1 June 2021, n. 1, v. 787 |
Page(s): | 012127 |
DOI: | 10.1088/1755-1315/787/1/012127 |
Abstract: |
In order to optimize the transverse structural system of the 1688m long-span steel box girder suspension bridge (Nizhou waterway bridge of Nansha Bridge), a new type of lateral damping energy-consuming wind-resistant bearing is proposed, and the quasi-static test is carried out. Also, the nonlinear time-history analysis method is used to compare and analyze the influence of the lateral fixed restraint and the new lateral damping energy-consuming wind-resistant bearing on the bridge tower internal force, main beam internal force, main beam displacement and rotation angle of the long-span suspension bridge. The research results show that, the new lateral damping energy-consuming wind-resistant bearing has good hysteretic energy consumption; compared with the conventional wind-resistant bearing, the seismic performance is better than the pylon which setting the horizontal fixed constraint, transverse bending moment of the pylon is smaller when adopting the new lateral damping energy-consuming wind-resistant bearing. The shearing force and bending moment of the main beam are obviously smaller than the transverse fixed restraint system, and decrease with the increase of the stroke of the bearing; the use of the new lateral damping wind-resistant bearing has little effect on the lateral displacement and rotation angle of the main beam. |
License: | This creative work has been published under the Creative Commons Attribution 3.0 Unported (CC-BY 3.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
0.78 MB
- About this
data sheet - Reference-ID
10781128 - Published on:
11/05/2024 - Last updated on:
05/06/2024