0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Dynamic model for large multi-flexible-body space structures

Author(s):



Medium: journal article
Language(s): English
Published in: International Journal of Structural Stability and Dynamics, , n. 3, v. 14
Page(s): 1350072
DOI: 10.1142/s0219455413500727
Abstract:

Large multi-flexible-body space structures, such as space solar arrays, comprise of multiple flexible substructures that are connected by joint hinges. Unlike traditional continuous structural models, a noncontinuous multi-flexible-body structural model with joint hinges is set up for the multi-flexible-body structure herein. In contrast to the general multi-body structural models in which each substructure is taken as a rigid body, the elastic deformation of every substructure in the multi-flexible-body structural model is taken into account. Furthermore, the connection stiffness and friction damping of joint hinges are considered as they affect the structural dynamic properties. All of the aforementioned considerations make the dynamic modeling of this multi-flexible-body structural system rather difficult. To solve the problem, an innovative semi-analytical model is developed for each flexible substructure. A four-node massless spring-damper element is built up for each joint hinge, in which the stiffness and damping coefficients of the hinge are calibrated by experiments. By comparing the computed results with experimental results, it can be concluded that the method proposed herein is correct and efficient.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1142/s0219455413500727.
  • About this
    data sheet
  • Reference-ID
    10352754
  • Published on:
    14/08/2019
  • Last updated on:
    14/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine