Dynamic Characteristics of Lightweight Aggregate Self-Compacting Concrete by Impact Resonance Method
Author(s): |
Ning Li
Sisi Zhang Guangcheng Long Zuquan Jin Yong Yu Xiaoying Zhang Chuansheng Xiong He Li |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-11 |
DOI: | 10.1155/2021/8811303 |
Abstract: |
Understanding the dynamic behavior of Lightweight Aggregate Self-Compacting Concrete (LWASCC) is of importance to the safety of concrete structures serving in dynamic loading conditions. In this study, the fundamental dynamic properties of LWASCC with three types of LWA were investigated by the impact resonance method. Results show that the dynamic elastic and shear modulus generally decrease with the increase of LWA volume fraction, whereas three types of LWA exert limited influence on dynamic Poisson’s ratio. The dynamic elastic and shear modulus show good linear dependence upon compressive strength. The inclusion of three types of LWA significantly increases the damping ratio, indicating significantly enhanced damping capacity of LWASCC under dynamic loading conditions. The damping ratio of LWASCC is improved by 2.0%, 4.4%, and 2.9% when adding 1% (by volume) expanded clay, rubber, and expanded polystyrene, respectively. The compressive strength and dynamic performances of LWASCC are highly influenced by the intrinsic properties (elastic modulus, damping capacity, wettability, etc.) and geometrical characteristics (size, surface roughness, etc.) of LWA, as well as the LWA-matrix bonding capacity. |
Copyright: | © 2021 Ning Li et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.12 MB
- About this
data sheet - Reference-ID
10602043 - Published on:
17/04/2021 - Last updated on:
02/06/2021