0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Dynamic Analysis of Sandwich Plates with Isotropic Skins and Viscoelastic Core

Author(s):

Medium: journal article
Language(s): English
Published in: International Journal of Structural Stability and Dynamics, , n. 3, v. 19
Page(s): 1950033
DOI: 10.1142/s0219455419500330
Abstract:

The free and forced vibration characteristics of three-layered sandwich plates with thin isotropic faces and Leptadenia pyrotechnica rheological elastomer (LPRE) core are studied in this investigation. The LPRE core is fabricated and experimented to determine its shear storage modulus and loss modulus. It is observed that the stiffness and damping characteristics of the LPRE core is significantly higher than those of the room-temperature vulcanized silicone rubber elastomer (RTVE) core. The governing equation of motion for the sandwich plate is derived by the Lagrange principle and given in finite element form. The natural frequencies and loss factors of the three-layered sandwich plate are studied by varying the thicknesses of the core and the constraining isotropic layer, and material of the constraining layer with different boundary conditions. The results are compared with those of similar structures with different core materials and boundary conditions. In addition, a LPRE-based sandwich plate is fabricated and its fundamental frequency is determined experimentally and compared with the finite element result. The forced vibration response of the three-layered sandwich plate is also explored under a harmonic excitation force. This study provides supports for the application of the LPRE-based sandwich plates potentially to the passive vibration suppression of structures.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1142/s0219455419500330.
  • About this
    data sheet
  • Reference-ID
    10352078
  • Published on:
    14/08/2019
  • Last updated on:
    14/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine