Durability Requirements for Reinforced Concrete Structures Placed in a Hostile Tropical Coastal Environment
Author(s): |
Abel Castañeda Valdés
Francisco Corvo Pérez Ildefonso Pech Pech Rigoberto Marrero Águila Emilio Bastidas-Arteaga |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 23 July 2024, n. 8, v. 14 |
Page(s): | 2494 |
DOI: | 10.3390/buildings14082494 |
Abstract: |
In this work, a series of durability requirements are proposed for the construction of long-service-life reinforced concrete (RC) structures in a coastal environment with extreme atmospheric corrosivity. RC specimens were exposed in a coastal outdoor site in Cuba for three years. Carbon steel corrosion evaluation revealed an annual average atmospheric corrosion rate over the maximum limit established (ISO 9223:2012) for extreme (CX) atmospheric corrosivity. The service life of the RC structures, considered as the sum of the time-to-corrosion-initiation and time-to-corrosion-induced concrete cracking, was determined as a function of durability requirements. The most important durability requirements to achieve a long service life (>70 years) in RC structures subjected to a CX corrosivity category were defined as follows: water/cement ratio, compressive strength, percentage of effective capillary porosity, and concrete cover thickness. Under these hostile environments, the expansion of the corrosion products formed on the reinforcement steel and the induced cracking of the concrete could be attributed partially to the formation of the akaganeite phase in reinforcement steel, which revealed a different morphology compared to the akaganeite typically formed in bare carbon steels. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.63 MB
- About this
data sheet - Reference-ID
10794955 - Published on:
01/09/2024 - Last updated on:
01/09/2024