0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The DSC Model for the Nonlinear Analysis of In-plane Loaded Masonry Structures

Author(s):
Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 6
Page(s): 200-214
DOI: 10.2174/1874149501206010200
Abstract:

A nonlinear finite element method with eight-noded isoparametric quadrilateral elements is used to predict the behavior of unreinforced masonry structures. The disturbed state concept (DSC) with modified hierarchical single yield surface (HISS) plasticity which is called DSC/HISS-CT is used to characterize the constitutive behavior of masonry in both compression and tension. The model uses two HISS yield surfaces for compressive and tensile behavior. The DSC model allows for the characterization of non-associative behavior through the use of disturbance. It computes microcrack-ing during deformation, which eventually leads to fracture and failure. the critical disturbance, Dc, identifies fracture and failure. In the DSC model the DSC model was validated at two levels: (1) specimen and (2) practical boundary value problem. At the specimen level, predictions are obtained by integrating the incremental constitutive relations. The pro-posed constitutive model is verified by comparing numerical predictions with results obtained from test data; the compari-sons are found to be highly satisfactory. A new explicit formula is also presented to estimate the strength of unreinforced masonry structures.

Copyright: © 2012 A. H. Akhaveissy
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10175835
  • Published on:
    02/01/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine