0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review

Author(s): ORCID
ORCID




Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 12
Page(s): 113
DOI: 10.3390/buildings12020113
Abstract:

Digital twin (DT) is gaining increasing attention due to its ability to present digital replicas of existing assets, processes and systems. DT can integrate artificial intelligence, machine learning, and data analytics to create real-time simulation models. These models learn and update from multiple data sources to predict their physical counterparts’ current and future conditions. This has promoted its relevance in various industries, including the construction industry (CI). However, recognising the existence of a distinct set of factors driving its adoption has not been established. Therefore, this study aims to identify the drivers and integrate them into a classification framework to enhance its understanding. Utilising popular databases, including Scopus, Web of Science, and ScienceDirect, a systematic literature review of 58 relevant DT adoptions in the CI research was conducted. From the review, the drivers for DT adoption in the CI were identified and classified. The results show that developed countries such as the UK, US, Australia, and Italy have been the top countries in advancing DT adoption in the CI, while developing countries have made commendable contributions. A conceptual framework has been developed to enhance the successful adoption of DT in the CI based on 50 identified drivers. The major categories of the framework include concept-oriented drivers, production-driven drivers, operational success drivers, and preservation-driven drivers. The developed framework serves as a guide to propel DT adoption in the CI. Furthermore, this study contributes to the body of knowledge about DT adoption drivers, which is essential for DT promotion in the CI.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10657730
  • Published on:
    17/02/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine