Driver Sleepiness Detection Algorithm Based on Relevance Vector Machine
Author(s): |
Lingxiang Wei
Tianliu Feng Pengfei Zhao Mingjun Liao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | The Baltic Journal of Road and Bridge Engineering, March 2021, n. 1, v. 16 |
Page(s): | 118-139 |
DOI: | 10.7250/bjrbe.2021-16.518 |
Abstract: |
Driver sleepiness is one of the most important causes of traffic accidents. Efficient and stable algorithms are crucial for distinguishing nonfatigue from fatigue state. Relevance vector machine (RVM) as a leading-edge detection approach allows meeting this requirement and represents a potential solution for fatigue state detection. To accurately and effectively identify the driver’s fatigue state and reduce the number of traffic accidents caused by driver sleepiness, this paper considers the degree of driver’s mouth opening and eye state as multi-source related variables and establishes classification of fatigue and non-fatigue states based on the related literature and investigation. On this basis, an RVM model for automatic detection of the fatigue state is proposed. Twenty male respondents participated in the data collection process and a total of 1000 datasets of driving status (half of non-fatigue and half of fatigue) were obtained. The results of fatigue state recognition were analysed by different RVM classifiers. The results show that the recognition accuracy of the RVM-driven state classifiers with different kernel functions was higher than 90%, which indicated that the mouth-opening degree and the eye state index used in this work were closely related to the fatigue state. Based on the obtained results, the proposed fatigue state identification method has the potential to improve the fatigue state detection accuracy. More importantly, it provides a scientific theoretical basis for the development of fatigue state warning methods. |
Copyright: | © 2021 Lingxiang Wei, Tianliu Feng, Pengfei Zhao, Mingjun Liao |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.18 MB
- About this
data sheet - Reference-ID
10601272 - Published on:
17/04/2021 - Last updated on:
02/06/2021