Dielectric Hybrid Optimization Model Based on Crack Damage in Semi-Rigid Base Course
Author(s): |
Zhiyong Huang
Guoyuan Xu Huayang Yu Xuetang Xiong Bo Zang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 22 October 2024, n. 11, v. 14 |
Page(s): | 3599 |
DOI: | 10.3390/buildings14113599 |
Abstract: |
To accurately predict the relative permittivity of cement-stabilized base materials, a study on the dielectric mixing model for cracked base materials was conducted. Based on the electromagnetic mixing theory of multiphase composites, a comprehensive dielectric mixing model of cement-stabilized base materials was derived. The volume ratios and relative permittivity values of the specimen constituents in different cracking states of the cement-stabilized base were determined using industrial CT and a Percometer relative permittivity meter, with comprehensive consideration given to the effects of different initial porosities and crack widths on the dielectric properties. Based on the volumetric and dielectric properties of the base material specimens in both intact and cracked states, as well as the error analysis between the predicted and measured values of the relative permittivity constant, the u-optimal solution of the dielectric mixing model for cement-stabilized base material was determined to be 1. Consequently, an optimization dielectric mixing model for semi-rigid base course materials in a cracked state was developed. The optimization model proposed is suitable for predicting the dielectric properties of cement-stabilized base material with crack widths generally greater than 3 mm during the service life of semi-rigid base course in engineering practice. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
7.96 MB
- About this
data sheet - Reference-ID
10810665 - Published on:
17/01/2025 - Last updated on:
25/01/2025