0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Development of Regression Models considering Time-Lag and Aerosols for Predicting Heating Loads in Buildings

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-19
DOI: 10.1155/2018/4878021
Abstract:

Building automation systems is becoming more vital, especially in regard to reduced building energy consumption. However, the accuracy of such systems in calculating building thermal loads is limited as they are unable to predict future thermal loads based on prevailing environmental factors. The current paper therefore seeks to improve the understanding of the interactions between outdoor meteorological data and building energy consumption through a statistical analysis. Using weather data collected by the Korean Meteorological Agency (KMA) over a period of three years (2011–2014), prediction models that are able to predict heating thermal loads considering the time-lag phenomenon are developed. In addition, the study develops different prediction models for buildings of different sizes. The results confirm the existence of the time-lag phenomenon: the heating load experienced by a building at a given time is better explained by a regression model developed using the climatic conditions that existed two hours before. As such, conventional building simulation programs must endeavor to include time-lag as well as Aerosol Optical Depth (AOD) data as important factors in the prediction of building heating loads.

Copyright: © 2018 Hong Soo Lim et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176678
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine