0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Development of Non-Proprietary Ultra-High Performance Concrete Mixtures

Author(s): ORCID

ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 12
Page(s): 1865
DOI: 10.3390/buildings12111865
Abstract:

The development of non-proprietary Ultra-High Performance Concrete (UHPC) is one way to reduce the initial cost of construction. However, workability is a major issue for which such mixtures are not practical in field conditions. Ultra-high performance cannot be achieved in field conditions if the concrete is not placed, finished, and compacted properly during placement. In this research, six UHPC mixtures were developed (three with steel fibers and three without fibers) using materials which are readily available on the local marketplace with water-to-cementitious materials ratios ranging between 0.17 to 0.30. The workability was determined using standard ASTM flow table apparatus, and specimens were prepared to determine compressive strength, splitting tensile strength, and permeable porosity. Flow table test exhibited flow values greater than 250 mm. Such high workability of the mixtures was achieved by optimizing the silica fume content and water reducing admixture dosage. These mixtures exhibited compressive strengths greater than 120 MPa and splitting tensile strengths greater than 5.10 MPa in both ambient and elevated curing temperatures. Results indicated that UHPC can be produced with a water-to-cementitious materials ratio as high as 0.30. Steel fibers helped to increase splitting tensile strength due to fiber-matrix interactions. Very low permeable porosity (1.7–16.7%) was observed which indicates superior durability due to the significant reduction of ingress of deleterious ions.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700261
  • Published on:
    10/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine