Development of Empirical Fragility Curves in Earthquake Engineering considering Nonspecific Damage Information
Author(s): |
Jung J. Kim
|
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-13 |
DOI: | 10.1155/2018/6209137 |
Abstract: |
As a function of fragility curves in earthquake engineering, the assessment of the probability of exceeding a specific damage state according to the magnitude of earthquake can be considered. Considering that the damage states for fragility curves are generally nested to each other, the possibility theory, a special form of the evidence theory for nested intervals, is applied to generate fragility information from seismic damage data. While the lognormal distributions are conventionally used to generate fragility curves due to their simplicity and applicability, the methodology to use the possibility theory does not require the assumption of distributions. Seismic damage data classified by four damage levels were used for a case study. The resulted possibility-based fragility information expressed by two monotone measures, “possibility” and “certainty,” are compared with the conventional fragility curves based on probability. The results showed that the conventional fragility curves provide a conservative estimation at the relatively high earthquake magnitude compared with the possibility-based fragility information. |
Copyright: | © 2018 Jung J. Kim |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.53 MB
- About this
data sheet - Reference-ID
10249518 - Published on:
30/12/2018 - Last updated on:
02/06/2021