0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Development and Verification of Wireless Vibration Sensors

Author(s): ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1648
DOI: 10.3390/buildings13071648
Abstract:

Structural vibration testing is an effective guarantee for the Structural Health Monitoring (SHM) of large-scale civil engineering. Traditional vibration testing has drawbacks such as difficulties in wiring and picking up low-frequency signals, low communication speed, and susceptibility to testing site conditions. In order to improve the universality of wireless vibration sensors, this article develops a wireless vibration sensor, introduces the module composition and basic principles of the sensor, and conducts standard vibration table performance comparison tests between wired acceleration sensors and wireless vibration sensors, verifying the accuracy of wireless vibration sensors. In order to further explore the feasibility of wireless vibration sensor applications, the wired acceleration sensor and wireless vibration sensor were used to analyze the structural dynamic characteristics of the four-layer steel frame structure model in the laboratory, and the comparison was made based on ABAQUS finite element simulation. Finally, the field vibration test was carried out outdoors. The results show that the natural frequency identification results of the wireless vibration sensor and the wired acceleration sensor for the four-story steel frame structure through fast Fourier transform, short_time Fourier transform, and wavelet transform are basically the same, the half-power bandwidth method and logarithmic decrement rate method are used to identify the damping, and wavelet transform is used to identify the vibration mode with minimal error and high accuracy. It shows that the wireless vibration sensor is feasible in practical engineering, has stable and reliable transmission capacity, and can provide certain reference values for earthquake monitoring, building Structural Health Monitoring, etc.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737377
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine