0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Development and Investigation of Repair Self-Sensing Composites Using S-CNT

Author(s):
ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 13
Page(s): 1015
DOI: 10.3390/buildings13041015
Abstract:

This study analyzed the mechanical and electrical characteristics of repair self-sensing composites. In order to ensure homogeneous dispersion of carbon nanotubes (CNTs) in the repair mortar, porous powder was impregnated with the liquid MWCNT, dried, and then pulverized. This CNT powder was named S-CNT, and a repair self-sensing cement composite was fabricated using it with different dosages, by weight, of 3, 6, and 9%. Mechanical and electrical performances of the developed materials were investigated through flexural, compressive, and bonding strengths, dry shrinkage, porosity, and fractional change in resistance (FCR) tests. There was little difference in terms of strength, between the three different composites made with the different dosages of S-CNT. The strength of the composite with 9% of S-CNT was even higher than that of the plain specimen. As a result of measuring drying shrinkage, conducted to evaluate the effect of improving dispersion, the length change rate decreased as the amount of S-CNT increased. As a result of the porosity results of the specimens incorporating the same mass of CNT as S-CNT, it was confirmed that the dispersibility was clearly improved. In addition, as an electrical characteristic, when the S-CNT mixed specimen was repeatedly loaded with a bending load, FCR appeared, confirming the self-sensing performance.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728298
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine