0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Determination of Mohr–Coulomb failure envelope, mechanical properties and UPV of commercial cement-lime mortar

Author(s):
ORCID


Medium: journal article
Language(s): English
Published in: Materials and Structures, , n. 4, v. 55
DOI: 10.1617/s11527-022-01959-z
Abstract:

Mortar in masonry structures can be subjected to both uniaxial and triaxial loading. Determining the mechanical properties and/or failure criteria of the commonly used mortar is necessary for the structural performance assessment of new and existing masonry buildings using non-destructive testing and/or finite element modelling methods. In this paper, the stress–strain behaviour of a commercially available cement-lime mortar is investigated under uniaxial and triaxial loading. The axial compressive strength, modulus of elasticity, Mohr–Coulomb failure envelopes of the mortar are determined over a range of conditions. Mortar specimens were prepared with a water to cementitious material ratio (w/cm) of 0.6–0.7 and were tested at curing ages of 3, 7, 14, and 28 days, under confining pressures of 0, 100, 250, 500 and 750 kPa. Ultrasonic pulse velocity (UPV) of the specimens were measured before the destructive testing. The results indicate that the influence of curing age and confining pressure on the axial compressive strength of the mortar can be predicted using proposed linear correlations between (i) The confining pressure and the axial compressive strength and (ii) The UPV and the axial compressive strength. From the test results, the strength parameters of the Mohr–Coulomb failure criterion were also determined. It is observed that cohesion is more sensitive to changes in curing age and w/cm than the friction angle, which varied between 32 and 33 degrees.

Copyright: © The Author(s) 2022
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10663227
  • Published on:
    09/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine