Detection and Assessment of Seismic Response of High-Speed Railway Bridges Based on Smartphone Public Participation
Author(s): |
Jiaqi Liu
Weijie Li Chenhao Zhao Yicheng Jing Chao Yin Xuefeng Zhao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 2 July 2024, n. 7, v. 14 |
Page(s): | 2091 |
DOI: | 10.3390/buildings14072091 |
Abstract: |
The seismic response detection and operational safety assessment of high-speed railway (HSR) bridges play a crucial role in ensuring HSR systems’ operational safety and reliability. Smartphones have introduced intelligent inspection tools for structural health detection, becoming a new tool for intelligent structural inspection. Combining the public and smartphones is the key to public participation in structural health detection. This study utilizes smartphone-based structural seismic response inspection technology to investigate the framework of public participation in earthquake response inspection and assessment. This system comprises the Smart Bridge Brain (SBB), which integrates data from multiple sources and systems, an assigning mechanism for public participation inspection tasks, and smartphone-based HSR bridge structural seismic response inspection technology. At the same time, the Unreal Engine 5.0 software is used to create a mixed-reality virtual simulation experimental environment to validate the feasibility of this framework. The results indicate that the intelligent optimization of task allocation by the SBB successfully assigns detection tasks to each public participant. Public participants can promptly reach predefined damage structure detection targets and rapidly inspect bridge structural seismic response indicators using smartphones. In addition, this paper also conducts a comprehensive evaluation and analysis of the detection of the work efficiency index (WEI) within the system. Furthermore, optimization strategies for the efficient execution of detection tasks are proposed based on WEI variations influenced by different factors. The system framework is expected to enhance cluster-based HSR bridges’ intelligent disaster prevention and mitigation capabilities. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
9.56 MB
- About this
data sheet - Reference-ID
10795517 - Published on:
01/09/2024 - Last updated on:
01/09/2024