Detecting Embankment Instability Using Measurable Track Geometry Data
Author(s): |
David Kite
Giulia Siino Matthew Audley |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Infrastructures, March 2020, n. 3, v. 5 |
Page(s): | 29 |
DOI: | 10.3390/infrastructures5030029 |
Abstract: |
The British railway system is the oldest in the world. Most railway embankments are aged around 150 years old and the percentage of disruption reports that feature them is frequently higher than other types of railway infrastructure. Remarkable works have been done to understand embankment deterioration and develop asset modelling. Nevertheless, they do not represent a sufficient way of managing assets in detail. As a result, reactive approaches combined with proactive ones would improve the whole asset management scenario. To guarantee good system performance, geotechnical asset management (GAM) aims to reduce uncertainty through informed, data driven decisions and optimisation of resources. GAM approaches are cost sensitive. Thus, data driven approaches that utilize existing resources are highly prized. Track geometry data has been routinely collected by Network Rail, over many years, to identify track defects and subsequently plan track maintenance interventions. Additionally, in 2018 Network Rail commissioned AECOM to undertake a study, described in this paper, to investigate the use of track geometry data in the detection of embankment instabilities. In this study, track geometry data for over 1800 embankments were processed and parameters offering the best correlation with embankment movements were identified and used by an algorithm to generate an embankment instability metric. The study successfully demonstrated that the instability of railway embankments is clearly visible in track geometry data and the metric gives an indication of the worsening of track geometry, that is likely due to embankment instability. |
Copyright: | © 2020 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.7 MB
- About this
data sheet - Reference-ID
10723213 - Published on:
22/04/2023 - Last updated on:
10/05/2023