0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Detailed Axial Compression Behavior of CFST Columns Infilled by Lightweight Concrete

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 14
Page(s): 2844
DOI: 10.3390/buildings14092844
Abstract:

The utilization of lightweight aggregate concrete (LWC) plays a major role in reducing the self-weight of CFST (concrete-filled steel tube) columns, which is reflected in the behavior of the structural system. This paper aims to investigate the characteristics of lightweight concrete-filled steel tubular (LWCFST) columns under an axial compressive load, using a total of (48) LWCFST column models. The simulated models were divided into four groups with different concrete compressive strength, length-to-diameter ratios (L/D), and diameter-to-thickness ratios (D/t). Four concrete compressive values were examined (30, 40, 50, and 60) MPa, three length-to-diameter ratios short (L/D = 3), medium (L/D = 6), and long (L/D = 9), and four diameter-to-thickness ratios (36, 31, 26, and 21). The method of nonlinear finite element analysis (NLFEA) was used to fulfill the objective of this study where results were presented as graphical plots between the compressive loading versus the axial and lateral strains along with the failure modes. In addition, the results were compared with the AISC360-16 and EC4 codes predictions to examine their applicability on the LWCFST columns where the AISC was overpredicted in most cases with higher percentages under lower (L/D) values, whereas the EC2 was underestimated in most cases with high percentages up to 28%, which become closer to the NLFEA predictions at higher (L/D) values. It has been revealed that the utilization of steel tubes significantly improves the LWCFST column’s mechanical performance, ductility, compressive strength, and toughness. Moreover, the structural behavior of the LWCFST columns and their associated failure modes was found to be highly affected by the geometrical properties of the CFST column (i.e., L/D ratio and D/t ratio) where specimens with small tube thickness show bad behavior. Finally, the utilization of high-strength concrete has a favorable performance compared to the utilization of thick steel tubes.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10799812
  • Published on:
    23/09/2024
  • Last updated on:
    23/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine