0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Author(s): ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 11
Page(s): 129
DOI: 10.3390/buildings11030129
Abstract:

Background: Future places for learning and working are digitally and physically integrated hybrid environments. The archetypical context of learning is the classroom, and context of working is the office; especially in knowledge work. New information and communication technologies enable the spatial reconfiguration of work opening possibilities for work to take place across multiple locations. This paper aims to explore how the conceptual framework of design-science research in Information Systems can be applied when the design object is a hybrid working environment. Methods: The case study method as a qualitative approach was chosen; because it involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence. The empirical analysis of two hybrid working environments is based on Action Design Research (ADR)-entry points; where one analyzes two case studies stage by stage. By analyzing various stages in both case studies; one can identify co-designing challenges of hybrid working environments. Results: The results present four recommendations for co-designing of hybrid working environments. The use of hybrid working environment; the design of spatial solution; the identification of iterative processes; and the user experiences of presence and distance are significant. The Entry Point Analysis-tool can be used and further developed in analyzing and developing hybrid working environments. Conclusion: The results contribute to the tradition of usability studies. The usability briefing approach can be further developed by identifying the iterative processes inside the linear project management models. Additionally, design science research can find new insights from identification of the large stakeholder iterations more precisely.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10602550
  • Published on:
    17/04/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine