Design-Optimization of Conventional Steel Structures for Realization of the Sustainable Development Objectives Using Metaheuristic Algorithm
Author(s): |
Mohammad Nader Negarestani
Hooman Hajikandi Bahador Fatehi-Nobarian Javad Majrouhi Sardroud |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 2 July 2024, n. 7, v. 14 |
Page(s): | 2028 |
DOI: | 10.3390/buildings14072028 |
Abstract: |
The construction industry presents a significant environmental challenge due to its substantial environmental footprint, utilization of limited natural resources, and contribution to pollution and climate change. Additionally, optimizing the weight, cost, and duration of construction is crucial for enhancing serviceability, flexibility, efficiency, and profitability. In this research, the relationship between structure weight and other objective functions was explored using the single-objective gray wolf algorithm to investigate their impact on carbon footprint, water footprint, and construction time. Furthermore, employing a multi-objective optimization algorithm, a building structure was optimized for three systems featuring different structural frames based on the specified objective functions. The results revealed that the structure with intermediate steel moment-resisting frames exhibited the shortest construction time but incurred the highest construction cost. Conversely, the structure with intermediate steel moment-resisting frames with special steel concentric bracing demonstrated the lowest carbon footprint and water footprint among the studied structural frames. Consequently, the structure with intermediate steel moment-resisting frames with special concentric steel bracing was proposed as a green structure, emphasizing its environmentally friendly characteristics. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.88 MB
- About this
data sheet - Reference-ID
10795263 - Published on:
01/09/2024 - Last updated on:
01/09/2024