The Design of Façade-Integrated Vertical Greenery to Mitigate the Impacts of Extreme Weather: A Case Study from Hong Kong
Author(s): |
Changying Xiang
Lulu Tao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 26 October 2023, n. 11, v. 13 |
Page(s): | 2865 |
DOI: | 10.3390/buildings13112865 |
Abstract: |
Vertical greenery not only helps to cool the surfaces of buildings but, more importantly, it can also mitigate the Urban Heat Island effect. The growth of vertical greenery is highly dependent on ongoing maintenance, such as irrigation. Wind-driven rain serves as a natural source of irrigation for vertical greenery. Wind-driven rain simulation was conducted on a typical high-density and high-rise case in Hong Kong to first classify the wind-driven rain harvesting potential on the façade with very high, high, moderate, low, and very low levels. Then, Scenario 1 (very high potential), Scenario 2 (very high + high potential), and Scenario 3 (very high + high + moderate potential) regarding vertical greenery in locations with three levels of wind-driven rain harvesting potential were simulated in ENVI-met to assess its Urban Heat Island mitigation effect. The maximum temperature reduction on the street occurs between 12 p.m. and 3 p.m., indicating the greatest mitigation of the Urban Heat Island effect. Scenario 1, Scenario 2, and Scenario 3 achieve a maximum temperature reduction of 0.76 °C, 0.88 °C, and 1.06 °C, respectively, during this time period. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.4 MB
- About this
data sheet - Reference-ID
10754283 - Published on:
14/01/2024 - Last updated on:
07/02/2024