Design of a Support System for Complicated Logistics Location Integrating Big Data
Author(s): |
Yusi Cheng
Xinwei Pan |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-16 |
DOI: | 10.1155/2021/6697755 |
Abstract: |
Logistics location is an important component of logistics planning that affects traffic pressure and vehicle emissions. To date, there has not been an adequate study of the integration of big data into the location for a complicated logistics system. This study developed a decision support system that can address location problems for complicated logistics systems, e.g., a multilevel urban underground logistics system (ULS), using logistics big data. First, information needed in the logistics location, such as the traffic performance index (TPI) and the origin/destination (OD) matrix, was collected and calculated using a big data platform, and this information was digitized and represented based on a geographic information system (GIS) tool. Second, a two-stage location model for a ULS was designed to balance the construction costs and traffic congestion. The first stage is establishing a set-covering model to identify optimum locations for secondary hubs based on the ant colony optimization algorithm, and the second stage is clustering of the secondary hubs to determine locations for primary hubs using the iterative self-organizing data analysis technique algorithm (ISODATA). Finally, the Xianlin district of Nanjing, China, was chosen as a case study to validate the effectiveness of the proposed system. The system can be used to facilitate logistics network planning and to promote the application of big data in logistics. |
Copyright: | © 2021 Yusi Cheng and Xinwei Pan et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.75 MB
- About this
data sheet - Reference-ID
10555046 - Published on:
22/01/2021 - Last updated on:
02/06/2021