Design and experiment study of a novel dual-channel independent-coil magnetorheological grease damper
Author(s): |
Huixing Wang
Dong Li Shuna Xue Junjie Sun Jiong Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Smart Materials and Structures, 2 February 2024, n. 3, v. 33 |
Page(s): | 035035 |
DOI: | 10.1088/1361-665x/ad2876 |
Abstract: |
In order to address the issue of reduced damping force dynamic range in magnetorheological (MR) damper caused by the high zero-field viscosity of MR grease, known for its sedimentation stability, this paper introduces a novel dual-channel independent-coil MR damper (DCICMRD). Firstly, the dual-channel configuration and the magnetic circuit structure of independent coils were meticulously designed, and a genetic algorithm was employed to conduct multi-objective optimization of the structural parameters for DCICMRD. The optimization results indicate that all performance metrics of the damper post-optimization exhibit improvements exceeding 15%. Then, the theocratical model of the damping force for DCICMRD under three operational modes are established, and the output damping force of various input currents for different operating mode is obtained. Finally, the DCICMRD was manufactured and subjected to dynamic performance testing. The results revealed that the damping force dynamic range in Mode III, i.e. dual-channel structure, can achieve approximately 15 times, whereas Mode I, i.e. traditional single-channel structure, only attains approximately 9 times. The aforementioned research holds significant implications for expanding the further engineering applications of MR dampers. |
- About this
data sheet - Reference-ID
10769269 - Published on:
29/04/2024 - Last updated on:
29/04/2024