0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Degradation Behavior of the Preload Force of High-Strength Bolts after Corrosion

Author(s): ORCID





Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 12
Page(s): 2122
DOI: 10.3390/buildings12122122
Abstract:

Corrosion significantly affects the structural behavior of members in a connection (i.e., the thickness of steel plates, the preload force of bolts, and the friction factor of steel plates). Safety assessment of corroded steel frames (i.e., beam-to-column connection, beams, or columns) has been a major concern in engineering. In this work, an experiment of accelerated corrosion testing is carried out to obtain corroded specimens connected with high-strength bolts, and the preload force of high-strength bolts (PF-HSB) is monitored throughout the whole stage of the corrosion testing. Before the corrosion testing, the PF-HSB caused by the stress relaxation is also recorded. The PF-HSB decreases rapidly in the first five hours after the final screwing of bolts and it keeps stable after 100 h. The PF-HSB is seriously affected by corrosion, which decreases by 30.0% of the original preload force when the corrosion rate of steel plate reaches 3.5%. A finite element method for predicting the PF-HSB after corrosion is proposed. An estimation model for the PF-HSB considering the stress relaxation is established. A degradation model for predicting the PF-HSB after corrosion is also suggested, and is in good agreement with experimental data. The results of this research are of great significance for the safety assessment of in-service steel structures.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699953
  • Published on:
    10/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine