0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Deformation Characteristics and Energy Evolution Rules of Siltstone under Stepwise Cyclic Loading and Unloading

Author(s):
ORCID




Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 14
Page(s): 1500
DOI: 10.3390/buildings14061500
Abstract:

Uniaxial step cyclic loading and unloading tests on siltstone were conducted to investigate the mechanisms and evolution characteristics of rock deformation, including elastic, viscoelastic, and plastic aspects. This study proposes a method for separating dissipated energy into damage energy, which is used for particle slippage and structural fractures, and plastic energy, which remains in cracks that do not open after unloading. Additionally, elastic energy is divided into particle elastic energy, released by particle rebound, and crack elastic energy, released by the reopening of compacted cracks. The results indicate that as the stress amplitude increases, the damage energy consumption, plastic energy consumption, particle elastic energy, and crack elastic energy increase. At peak stress, significant expansion and penetration of cracks within the rock sample occur, leading to a sharp increase in damage energy consumption and a dramatic decrease in the rock sample’s mechanical properties, with the particle elastic energy dropping quickly. Plastic energy dissipation relates solely to cracks that do not reopen during unloading, with minimal change after reaching peak stress. The calculated damage variables, based on damage energy consumption, align with the deformation and energy characteristics of the rock, providing a reasonable description of the damage development process of the rock under cyclic loading and unloading.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787704
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine