0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Deformation Behavior of Coarse-Grained Soil as an Embankment Filler under Cyclic Loading

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-13
DOI: 10.1155/2020/4629105
Abstract:

This study aims to examine the deformation behavior and internal mechanism of coarse-grained soil as an embankment filler under cyclic loading. Numerical dynamic triaxial tests were performed on coarse-grained soil using the discrete element software PFC3D. The numerical model was verified by comparing the numerical results with the experimental data. Afterward, the changes in the porosity, force chain, and particle movement of coarse-grained soil samples were analyzed, and the mesoscopic deformation behavior of coarse-grained soil under cyclic loading was investigated. The research results show that with the increase of the deviatoric stress amplitude, moisture content, and loading frequency, the deformation of the soil increases and the ability to resist deformation decreases at the same loading cycles. Due to the inhomogeneous distribution of particles with different sizes, the velocity and displacement of the sample vary in different directions, exhibiting mesoscopic anisotropy. The contact force is relatively even in the downward direction while dispersed near the edge of the sample. This means that the particles at the bottom are less affected by loads and the internal evolution of soil samples conforms to its macroscopic deformation behavior during cyclic loading.

Copyright: © 2020 Zhong-Ming He et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10430859
  • Published on:
    24/08/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine