0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Deep Learning-Based Structural Damage Identification Method Integrating CNN-BiLSTM-Attention for Multi-Order Frequency Data Analysis

Author(s):

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 15
Page(s): 763
DOI: 10.3390/buildings15050763
Abstract:

Structural health monitoring commonly uses natural frequency analysis to assess structural conditions, but direct frequency shifts are often insensitive to minor damage and susceptible to environmental influences like temperature variations. Traditional methods, whether based on absolute frequency changes or theoretical models like PCA and GMM, face challenges in robustness and reliance on model selection. These limitations highlight the need for a more adaptive and data-driven approach to capturing the intrinsic nonlinear correlations among multi-order modal frequencies. This study proposes a novel approach that leverages the nonlinear correlations among multi-order natural frequencies, which are more sensitive to structural state changes. A deep learning framework integrating CNN-BiLSTM-Attention is designed to capture the spatiotemporal dependencies of multi-order frequency data, enabling the precise modeling of intrinsic correlations. The model was trained exclusively on healthy-state frequency data and validated on both healthy and damaged conditions. A probabilistic modeling approach, incorporating Gaussian distribution and cumulative probability functions, was used to evaluate the estimation accuracy and detect correlation shifts indicative of structural damage. To enhance the robustness, a moving average smoothing technique was applied to reduce random noise interference, and damage identification rates over extended time segments were calculated to mitigate transient false alarms. Validation experiments on a mass-spring system and the Z24 bridge dataset demonstrated that the proposed method achieved over 95% damage detection accuracy while maintaining a false alarm rate below 5%. The results validate the ability of the CNN-BiLSTM-Attention framework to effectively capture both structural and environmental nonlinearities, reducing the dependency on explicit theoretical models. By leveraging multi-order frequency correlations, the proposed method provides a robust and highly sensitive approach to structural damage identification. These findings confirm the practical applicability of deep learning in damage identification during the operational phase of structures.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10820627
  • Published on:
    11/03/2025
  • Last updated on:
    11/03/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine