Deep Learning-Based Real-Time Traffic Sign Recognition System for Urban Environments
Author(s): |
Chang-il Kim
(Korea Electronics Technology Institute, Seongnam 13509, Republic of Korea)
Jinuk Park (Korea Electronics Technology Institute, Seongnam 13509, Republic of Korea) Yongju Park (Korea Electronics Technology Institute, Seongnam 13509, Republic of Korea) Woojin Jung (Korea Electronics Technology Institute, Seongnam 13509, Republic of Korea) Yong-seok Lim (Korea Electronics Technology Institute, Seongnam 13509, Republic of Korea) |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Infrastructures, February 2023, n. 2, v. 8 |
Page(s): | 20 |
DOI: | 10.3390/infrastructures8020020 |
Abstract: |
A traffic sign recognition system is crucial for safely operating an autonomous driving car and efficiently managing road facilities. Recent studies on traffic sign recognition tasks show significant advances in terms of accuracy on several benchmarks. However, they lack performance evaluation in driving cars in diverse road environments. In this study, we develop a traffic sign recognition framework for a vehicle to evaluate and compare deep learning-based object detection and tracking models for practical validation. We collect a large-scale highway image set using a camera-installed vehicle for training models, and evaluate the model inference during a test drive in terms of accuracy and processing time. In addition, we propose a novel categorization method for urban road scenes with possible scenarios. The experimental results show that the YOLOv5 detector and strongSORT tracking model result in better performance than other models in terms of accuracy and processing time. Furthermore, we provide an extensive discussion on possible obstacles in traffic sign recognition tasks to facilitate future research through numerous experiments for each road condition. |
Copyright: | © 2023 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.56 MB
- About this
data sheet - Reference-ID
10722751 - Published on:
22/04/2023 - Last updated on:
10/05/2023