0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Data-Driven Shear Strength Prediction of FRP-Reinforced Concrete Beams without Stirrups Based on Machine Learning Methods

Author(s):

Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 313
DOI: 10.3390/buildings13020313
Abstract:

Due to the intrinsic complexity, there has been no widely accepted mechanics-based estimation model of the shear performance of Fiber-Reinforced Polymer (FRP)-reinforced concrete beams. Capitalizing on a large amount of previous experimental data, data-driven machine learning (ML) models could be potentially suitable for addressing this problem. In this paper, four existing shear design provisions are reviewed and four typical ML models are analyzed. The accuracy of codified methods and ML models are compared and analyzed based on our established extensive database of FRP-reinforced concrete beams with rectangular cross sections. A series of artificially selected features considering the shear-carrying mechanisms of FRP-reinforced beams are incorporated into the proposed ML models to show their influence on the model validity. Bayesian optimization is utilized to automatically tune the hyperparameters of different ML models. Compared to the most satisfying codified predictions from CSA S806, the best ML model, XGBoost, can provide more accurate and consistent predictions for the database, with R2 enhanced by 15% and the MAE and RMSE reduced by 59% and 52%, respectively. With the selected features based on domain knowledge, the performance of ML models is further enhanced, shown by the most important features being the added ones. With outstanding performance on a large database and singular test, the ML approaches have great potential in guiding the shear design of FRP-reinforced concrete.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712167
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine