0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Data-Driven Prediction Model for High-Strength Bolts in Composite Beams

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 13
Page(s): 2769
DOI: 10.3390/buildings13112769
Abstract:

In recent years, the application of artificial intelligence-based methods to engineering problems has received consistent praise for their high predictive accuracy. This paper utilizes a BP neural network to predict the strength of steel–concrete composite beam shear connectors with high-strength friction-grip bolts (HSFGBs). These connectors are widely used in bridge and building construction due to their superior strength and stiffness compared to traditional beams. A validated finite element model was used to predict the strength of HSFGB shear connectors. A reliable database was created by analyzing 208 models with different characteristics for machine learning modeling. Previous studies have identified issues with result variation and overestimation or underestimation of shear connection strength. Among the machine learning methods evaluated, the backpropagation neural network model performed the best. It achieved a goodness of fit of over 93% in both the training and testing sets, with a low coefficient of variation of 6.50%. Concrete strength, bolt diameter, and bolt tensile strength were found to be important variables influencing the strength of shear connectors. Other variables showed a proportional or inverse relationship with compressive strength, except for concrete strength and bolt pretension. This study presents an accurate machine learning approach for predicting the strength of HSFGB shear connectors in steel–concrete composite beams. The study offers valuable insights into the effects of various variables on the performance of shear connection strength, providing support for structural design and analysis.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10754258
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine