0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Damage identification based on convolutional neural network and recurrence graph for beam bridge

Author(s):



Medium: journal article
Language(s): English
Published in: Structural Health Monitoring, , n. 4, v. 20
Page(s): 147592172091692
DOI: 10.1177/1475921720916928
Abstract:

Traditional statistical pattern identification methods, such as artificial neural network and support vector machine, have limited ability to identify minor damage of bridges. Deep learning can mine the inherent law and representation level of sample data. As a typical algorithm of deep learning, convolutional neural network is a feedforward neural network with deep structure and convolution calculation, and its ability of image identification is very outstanding. The recurrence graph of structural response can reveal the internal structure, similarity, and damage information. The original structure response signal involves the coupling vibration of vehicle and bridge is filtered and reconstructed by wavelet packet, and then the recurrence graph of different damage cases is obtained, which is used as the input image of convolutional neural network as a new type of damage feature; thus, a damage identification method based on convolutional neural network and recurrence graph is established. The results of numerical simulation and model experiment show that the recurrence graph contains more damage information; compared with the traditional statistical pattern identification methods, convolutional neural network can achieve more accurate feature extraction and identification through intelligent learning layer by layer, so as to realize more accurate identification of damage location and damage degree.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/1475921720916928.
  • About this
    data sheet
  • Reference-ID
    10562415
  • Published on:
    11/02/2021
  • Last updated on:
    09/07/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine