0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Damage Evolution Characteristics of Steel-Fiber-Reinforced Cellular Concrete Based on Acoustic Emission

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 15
Page(s): 229
DOI: 10.3390/buildings15020229
Abstract:

In order to investigate the steel fiber parameters on the damage characteristics and crack evolution of cellular concrete materials, uniaxial compression–acoustic emission combined tests were carried out on steel-fiber-reinforced cellular concrete (SFRCC) with different steel fiber contents (0%, 0.5%, 1%, 1.5%, and 2%) and different porosities (10% and 20%). The material damage evolution characteristics were analyzed by acoustic emission parameters and IB values, and the crack types were identified using Gaussian mixture clustering method (GMM) pairs. The results show the following: the inclusion of steel fibers increased the compressive strength of cellular concrete by 19.8~46.3% at 10% porosity, and by 37.1~102.2% at 20% porosity; the addition of steel fibers significantly increased the density and intensity of the acoustic emission signals; the decreasing tendency of the IB value at the peak stress slowed down with the increase in the amount of steel fibers, and the steel fibers could effectively inhibit the crack development; crack classification results show that the proportion of shear cracks in all stages of cellular concrete increased significantly after the addition of steel fibers.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10815963
  • Published on:
    03/02/2025
  • Last updated on:
    03/02/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine