Dam Deformation Prediction Considering the Seasonal Fluctuations Using Ensemble Learning Algorithm
Author(s): |
Mingkai Liu
Yanming Feng ShanShan Yang Huaizhi Su |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 2 July 2024, n. 7, v. 14 |
Page(s): | 2163 |
DOI: | 10.3390/buildings14072163 |
Abstract: |
Dam deformation is the most visual and relevant monitoring quantity that reflects the operational condition of a concrete dam. The seasonal variations in the external environment can induce seasonal fluctuations in the deformation of concrete dams. Hence, preprocessing the deformation monitoring series to identify seasonal fluctuations within the series can effectively enhance the accuracy of the predictive model. Firstly, the dam deformation time series are decomposed into the seasonal and non-seasonal components based on the seasonal decomposition technique. The advanced ensemble learning algorithm (Extreme Gradient Boosting model) is used to forecast the seasonal and non-seasonal components independently, as well as employing the Tree-structured Parzen Estimator (TPE) optimization algorithm to tune the model parameters, ensuring the optimal performance of the prediction model. The results of the case study indicate that the predictive performance of the proposed model is intuitively superior to the benchmark models, demonstrated by a higher fitting accuracy and smaller prediction residuals. In the comparison of the objective evaluation metrics RMSE, MAE, and R2, the proposed model outperforms the benchmark models. Additionally, using feature importance measures, it is found that in predicting the seasonal component, the importance of the temperature component increases, while the importance of the water pressure component decreases compared to the prediction of the non-seasonal component. The proposed model, with its elevated predictive accuracy and interpretability, enhances the practicality of the model, offering an effective approach for predicting concrete dam deformation. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
15.16 MB
- About this
data sheet - Reference-ID
10795150 - Published on:
01/09/2024 - Last updated on:
01/09/2024