0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Cyclic Responses of Two-Side-Connected Precast-Reinforced Concrete Infill Panels with Different Slit Types

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 12
Page(s): 16
DOI: 10.3390/buildings12010016
Abstract:

This study aimed to study the cyclic behavior of two-side-connected precast-reinforced concrete infill panel (RCIP). A total of four RCIP specimens with different slit types and height-to-span ratios modeled at a one-third scale were tested subjected to cyclic lateral loads. The failure mode, hysteretic behavior, lateral strength, stiffness degradation, ductility, and energy dissipation capacity of each RCIP specimen were determined and analyzed. The specimens experienced a similar damage process, which involved concrete cracking, steel rebar yielding, concrete crushing, and plastic hinge formation. All the specimens showed pinched hysteretic curves, resulting in a small energy dissipation capacity and a maximum equivalent viscous damping ratio lower than 0.2. The specimens with penetrated slits experienced ductile failure, in which flexural hinges developed at both slit wall ends. The application of penetrated slits decreased the initial stiffness and lateral load-bearing capacity of the RC panel but increased the deformation capacity, the average ultimate drift ratios ranged from 1.41% to 1.99%, and the lowest average ductility ratio reached 2.48. The specimens with high-strength concrete resulted in a small slip no more than 1 mm between the RC panel and steel beam, and the channel shear connectors ensured that the RC infill panel developed a reliable assembly with the surrounding steel components. However, specimens with concealed vertical slits (CVSs) and concealed hollow slits (CHSs) achieved significantly higher lateral stiffness and lateral strength values. Generally, the specimens exhibited two-stage mechanical features. The concrete in the CVSs and CHSs was crushed, and flexural plastic hinges developed at both ends of the slit walls during the second stage. With increasing concrete strength, the initial lateral stiffness and lateral strength values of the RCIP specimens increased. With an increasing height-to-span ratio, the lateral stiffness and strength of the RC panels with slits decreased, but the failure mode remained unchanged.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10648334
  • Published on:
    07/01/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine