Cyclic Loading Test Conducted on the Bottom Joints of a Hybrid Precast Utility Tunnel Composed of Double-Skin Sidewalls and a Precast Bottom Slab
Author(s): |
Weichen Xue
Shengyang Chen Qinghua Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 1 February 2024, n. 2, v. 14 |
Page(s): | 341 |
DOI: | 10.3390/buildings14020341 |
Abstract: |
Four full-scale specimens were constructed, including two hybrid precast specimens with a haunch (height: 150 mm, PUT-H) and without a haunch (PUT). Additionally, two cast-in-place (CIP) comparative specimens (referred to as RUT-H and RUT) were included, all of which underwent reversed cyclic loading. The results showed that the four specimens suffered flexural damage at the ends of the sidewall and displayed similar hysteresis loops shapes. The bearing capacity of the PUT specimen was 2.7% higher than that of the RUT, while the bearing capacity of the PUT-H specimen was 8.5% lower than that of the RUT-H. Additionally, the displacement ductility values of the precast specimens PUT and PUT-H were 2.98 and 2.46, respectively, which are 11.3% and 3.53% lower than those of the corresponding CIP specimens. The haunch increases the local stiffness of the component, exerting a notable influence on the bearing capacity and displacement ductility of the specimens, increasing the bearing capacity by 20% and decreasing the ductility by 21%. Moreover, an assessment conducted using the criteria outlined in ACI 374.1-05 indicated that the four specimens exhibit excellent seismic performance. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.15 MB
- About this
data sheet - Reference-ID
10760291 - Published on:
15/03/2024 - Last updated on:
25/04/2024