0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Cyclic Behavior of the Column-Tree Moment Connection with Weakened Plates: A Numerical Approach

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 13
Page(s): 2908
DOI: 10.3390/buildings13122908
Abstract:

The use of column-tree connections is common in controlled shop environments due to their cost-effectiveness in achieving ductile welds. Field bolts are also easy to install and inspect. However, there is currently no prequalification available for these connections, their performance is not fully understood, and the cost of aftermath repairs is still a major concern for owners. In this research, analytical and numerical studies were performed to assess the cyclic behavior considering the effects of the bolted splice location, bolt slippage, and splice plate thickness. Fourteen numerical models using the finite element method in ANSYS software were analyzed to evaluate the nonlinear behavior of moment connection configurations in terms of the strength, stiffness, ductility, energy dissipation, and overall cyclic response. The results showed that appropriately proportioned bolted splice connections can meet the requirements for prequalified moment connections. The models complied with the criteria established in AISC 358 and achieved flexural resistance that was higher than 80% of the beam plastic moment at 4% of the interstory drift ratio. The weakened plates concentrated the inelastic action, which allowed us to prevent the brittle behavior and damage to the column, welding, and other components of the moment connection. Complex geometries or specially fabricated parts were not required, providing a cost-effective way to control seismic-related damage. Also, required repairs are based on the replacement of standard parts, reducing operational detentions in facilities. Finally, the moment connection studied is classified as partially restrained (PR) according to the requirements established in AISC 360.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753517
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine