Critical Review of Polymeric Building Envelope Materials: Degradation, Durability and Service Life Prediction
Author(s): |
Marzieh Riahinezhad
Madeleine Hallman J-F. Masson |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 30 June 2021, n. 7, v. 11 |
Page(s): | 299 |
DOI: | 10.3390/buildings11070299 |
Abstract: |
This paper provides a critical review of the degradation, durability and service life prediction (SLP) of polymeric building envelope materials (BEMs), namely, claddings, air/vapour barriers, insulations, sealants, gaskets and fenestration. The rate of material deterioration and properties determine the usefulness of a product; therefore, knowledge of the significant degradation mechanisms in play for BEMs is key to the design of proper SLP methods. SLP seeks to estimate the life expectancy of a material/component exposed to in-service conditions. This topic is especially important with respect to the potential impacts of climate change. The surrounding environment of a building dictates the degradation mechanisms in play, and as climate change progresses, material aging conditions become more unpredictable. This can result in unexpected changes and/or damages to BEMs, and shorter than expected SL. The development of more comprehensive SLP methods is economically and environmentally sound, and it will provide more confidence, comfort and safety to all building users. The goal of this paper is to review the existing literature in order to identify the knowledge gaps and provide suggestions to address these gaps in light of the rapidly evolving climate. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
0.71 MB
- About this
data sheet - Reference-ID
10613521 - Published on:
09/07/2021 - Last updated on:
14/09/2021