0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Coupled Hydrologic-Mechanical-Damage Analysis and Its Application to Diversion Tunnels of Hydropower Station

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-17
DOI: 10.1155/2021/8341528
Abstract:

Since the traditional model cannot sufficiently reflect the multifield coupling problem, this paper established an elastoplastic stress-seepage-damage analysis model considering the seepage field, stress field, and damage field. Simultaneously, the elastoplastic damage model involves many parameters and is difficult to determine. An inverse analysis program is compiled based on the differential evolution algorithm, and the surrounding rock damage parameters are inverted. Finally, the elastoplastic stress-seepage-damage coupling program and the damage parameter displacement back analysis program is compiled using C++ language. Then, the program is used to calculate the coupling problem of tunnel elastoplastic stress-seepage-damage. The results show that the proposed elastoplastic damage constitutive model can well describe the mechanical behavior of rock. The computational procedure can also simulate practical engineering problems, which can provide specific guidance for site construction.

Copyright: © 2021 Annan Jiang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10578411
  • Published on:
    02/03/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine