0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Cost-Based Optimization of Isolated Footing in Cohesive Soils Using Generalized Reduced Gradient Method

Author(s): ORCID
ORCID

ORCID
ORCID
ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1646
DOI: 10.3390/buildings12101646
Abstract:

This study presents a cost-based optimization model for the design of isolated foundations in cohesive soils. The optimization algorithm not only incorporates safety requirements in the form of ultimate limit state (ULS) and serviceability limit state (SLS) criteria but also deals with the economics simultaneously. In that regard, the generalized reduced gradient (GRG) method is used for the optimization purpose to achieve the least construction cost of an isolated foundation along with the integration of design parameters as optimization variables. The optimization technique is elaborated using a design example in silty clayey soil and the results of the optimized design are compared with those of the conventional design. The optimization model shows that the optimized design can reduce the construction cost by up to 44% as compared to the conventional design cost for the particular example. Moreover, a sensitivity analysis is also performed to evaluate the quantitative impact of cohesive soil properties, design load, and groundwater table on the construction cost. The results indicate that the construction cost majorly depends on the combined effect of four key parameters: Young’s modulus, recompression index, design load, and groundwater table.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700198
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine