Coriolis Force Sliding Mode Control Method for the Rotary Motion of the Central Rigid Body-Flexible Cantilever Beam System in TBM
Author(s): |
Chuanlu Zhou
Long Qin Ming Chen Jingxiang Zhang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2021, v. 2021 |
Page(s): | 1-7 |
DOI: | 10.1155/2021/9866453 |
Abstract: |
Beam slab structure is often encountered in a complex tunnel boring machine. Beam slab structure is subject to dynamic load, which is easy to cause fatigue damage and affect its service life. Therefore, it is necessary to control the vibration of this kind of beam slab structure. In this study, the central rigid body-flexible beam model is established for the rotating beam and plate rotating around the y-axis. Based on the Hamilton variational principle, the dynamic equation of the central rigid body-flexible beam system is established, and the dynamic model of the central rigid body-flexible beam system considering the influence of Coriolis force and centrifugal force is given. The vibration control of the central rigid body-flexible beam system is studied. The vibration mode of the rotating Euler Bernoulli beam is determined by using the elastic wave and vibration mode theory. The influence of the rotating motion on the beam vibration is analyzed, and the variable structure control law is designed to suppress the beam vibration. Numerical simulation results show that the control method can effectively suppress the first_order and second-order vibration of the beam and verify the effectiveness of the control strategy. |
Copyright: | © Chuanlu Zhou et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.32 MB
- About this
data sheet - Reference-ID
10648182 - Published on:
10/01/2022 - Last updated on:
17/02/2022