A Control Optimization Model for a Double-Skin Facade Based on the Random Forest Algorithm
Author(s): |
Qing Sun
Yifan Du Xiuying Yan Junwei Song Long Zhao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 8 October 2024, n. 10, v. 14 |
Page(s): | 3045 |
DOI: | 10.3390/buildings14103045 |
Abstract: |
This study addresses the current difficulties in accurately controlling the indoor temperature of double-skin facades (DSFs), and its optimization, with a focus on the window opening angles of double-skin facades. The Spearman correlation coefficient method was used to select the main meteorological factors, including outdoor temperature, dew point temperature, scattered radiation, direct radiation, and window opening angle. A modified random forest algorithm was used to construct the optimization model and 80% of the data were used for model training. In the experiments, the average accuracy of the optimization model was as high as 93.5% for all window opening angles. This study provides a data-driven method for application to double-skin facades, which can effectively determine and control the window opening angles of double-skin facades to achieve energy saving and emission reduction, reduce indoor temperature, improve comfort, and provide a practical basis for decision-making. Future research will further explore the applicability and accuracy of the model under different climatic conditions. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.65 MB
- About this
data sheet - Reference-ID
10804533 - Published on:
10/11/2024 - Last updated on:
10/11/2024