0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Contribution of Torsional Vibration Modes and the Influence on Period Ratios in the Seismic Response of Elastic Plate Bent Frame Structures

Author(s): ORCID





Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 14
Page(s): 3328
DOI: 10.3390/buildings14103328
Abstract:

The structural characteristics of large-span structures inherently differ from those of conventional multistorey structures, making it challenging to accurately describe the contribution of various vibration modes to the overall response using traditional dynamic response analysis methods. Based on the response spectrum method, this paper investigates the influence of the first torsional mode on the overall effects of large-span structures. It proposes a new metric, called the torsional mode contribution factor, to characterize the contribution of torsional modes. Focusing primarily on single-span frames, the study explores the impact of factors such as eccentricity ratio, aspect ratio, and roof stiffness on the torsional mode contribution factor. Additionally, the relationship between the period ratio and the torsional mode contribution factor is examined to assess the necessity of controlling the period ratio. The findings reveal that the contribution of torsional modes to the overall seismic response varies significantly under different conditions, such as eccentricity ratio, aspect ratio, roof stiffness, and torsional stiffness. The torsional mode’s contribution is minimal for small eccentricity ratios, with the response primarily driven by translational modes. As eccentricity increases, translational-torsional coupling becomes more pronounced, amplifying the influence of torsional modes on the overall dynamic response. The study also highlights that increasing roof stiffness and aspect ratios can mitigate torsional effects to a certain extent. Still, excessive eccentricity ratios and stiffness may result in higher torsional contributions. Additionally, it is found that increasing torsional stiffness reduces the influence of torsional modes but does not eliminate the overall torsional deformation. The proposed torsional mode contribution factor offers an effective way to quantify these effects, demonstrating that traditional control methods, such as period ratio control, may not fully capture the torsional contributions.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10804598
  • Published on:
    10/11/2024
  • Last updated on:
    10/11/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine