Concrete damage due to oxidation of pyrrhotite-bearing aggregate: a review
Author(s): |
Josée Duchesne
Andrea Rodrigues Benoit Fournier |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | RILEM Technical Letters, March 2021, v. 6 |
Page(s): | 82-92 |
DOI: | 10.21809/rilemtechlett.2021.138 |
Abstract: |
Oxidation of pyrrhotite-bearing aggregates is one of the major causes of concrete damage in numerous buildings in Trois-Rivières in Canada and Connecticut in the USA. In the presence of moisture and oxygen, pyrrhotite oxidizes to generate iron-and sulfate-rich secondary minerals that cause internal sulfate attack. Iron sulfides are accessory minerals of different rock types. The distribution of sulfides is often very heterogeneous in terms of aggregate particles, even at the level of the quarries in which some areas may contain copious amounts than others, which complicates the sampling method. Pyrrhotite is a complex mineral with varying chemical composition, crystallographic structure, and specific surface area. These factors influence the reactivity of pyrrhotite. Therefore, it is challenging to control the quality of the aggregate sources. In this study, recent advances in the identification and quantification of pyrrhotite to diagnose complicated cases are presented, and a performance-based approach for the quality control of new sources of aggregates is introduced. The performance-based approach is preferred because it eliminates the influence of the oxidation of pyrrhotite. |
Copyright: | © 2021 Josée Duchesne, Andrea Rodrigues, Benoit Fournier |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.83 MB
- About this
data sheet - Reference-ID
10627604 - Published on:
05/09/2021 - Last updated on:
14/09/2021